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Abstract Soybean cyst nematode (SCN) is a major soy-
bean pest throughout the soybean growing regions in the
world, including the USA. Soybean PI 90763 is an
important SCN resistance source. It is resistant to sev-
eral SCN populations including races 2, 3 and 5. But its
genetics of resistance is not well known. The objectives
of this study were to: (1) confirm quantitative trait loci
(QTLs) for resistance to SCN race 3 in PI 90763 and (2)
identify QTLs for resistance to SCN races 2 and 5. QTLs
were searched in Hamilton · PI 90763 F2:3populations
using 193 polymorphic simple sequence repeats (SSRs)
covering 20 linkage groups (LGs). QTLs for resistance
to SCN were identified on LGs A2, B1, E, G, J and L.
The same QTL was suggested for resistance to different
SCN races where their 1-LOD support intervals of QTL
positions highly overlapped. The QTL on LG G was
associated with resistance to races 2, 3 and 5. The QTL
on LG B1 was associated with resistance to races 2 and
5. The QTL on LG J was associated with resistance to
races 2 and 3. The QTLs on LGs A2 and L were asso-
ciated with resistance to race 3. The QTL on LG E was
associated with resistance to race 5. We conclude that
LGs A2 and B1 may represent an important distinction
between resistance to SCN race 3 and resistance to SCN
races 2 and 5 in soybean.

Introduction

Soybean cyst nematode (SCN) (Heterodera glycines
Ichinohe) is the most important pest of soybean (Glycine
max (L.) Merr) in the world and causes more yield
losses than any other soybean disease (Wrather et al.
1995, 2001).

The use of resistant cultivars is the most effective way
to control SCN damage (Wrather et al. 1995; Bradley
and Duffy 1982). A total of 118 SCN-resistant acces-
sions have been identified in the USA (Arelli et al. 1997,
2000), but few are resistant to more than four different
SCN races. These multiple-SCN-resistant accessions in-
clude PI 437654, PI 438489B, PI 90763, PI 89772, PI
404198A, PI 404166, and PI 438489.

Understanding of the genetic basis of resistance to
SCN in soybean is important for the development of
SCN-resistant varieties and germplasm. Mapping resis-
tance to SCN using molecular markers provides a
powerful tool for characterization of the genetic basis of
soybean resistance to SCN. Quantitative trait loci
(QTLs) have been identified using molecular markers for
resistance to SCN races 1, 2, 3, 5, 6 and /or 14 in a total
of 13 accessions (9 resistance sources). They are located
on all linkage groups (LGs) except for D1b, K and O
(Concibido et al. 2004). The QTLs for resistance to SCN
on LGs G and A2 (rhg1 and Rhg4, respectively) have
been well studied and molecular markers have been
saturated around them (Cregan et al. 1999a, 1999b;
Mudge et al. 1997; Weisemann et al. 1992; Matthews
et al. 1998; Meksem et al. 2001). It is reported that rhg1
and Rhg4 have been cloned and sequenced (Hauge et al.
2001; Lightfoot and Meksem 2002), but functional tests
of candiadate genes are needed to demonstrate that they
are the correct candidate genes (Glazier et al. 2002). LG
G seems to be involved in all SCN races except for race
14, whereas LG A2 seems to play a distinct role in
resistance to race 3 (Guo et al. unpublished). Addi-
tional studies are needed for a greater understanding of
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resistance to SCN races except for race 3 and for
confirmation of existence of the QTLs except for those
on LGs G and A2. In the meantime, some QTLs may
not have been detected in earlier studies in which only a
limited number of RFLPs and a small mapping popu-
lation size was used. Further genome scanning of QTLs,
including more SCN races and more coverage of genome
scanning, especially using simple sequence repeat (SSR)
markers, is needed in soybean resistance sources.

Soybean PI 90763 is one of the few sources which can
provide a greater spectrum of resistance to SCN. It is
resistant to SCN races 1, 2, 3, 5 and 6 and moderately
resistant to race 14 (Arelli et al. 1997, 2000; Concibido
et al. 2000). This PI line has also begun to be used in
USA soybean breeding programs. PI 90763 is also used
for classifying SCN populations (Schmitt and Shannon
1992; Niblack et al. 2002). However, its genetics of
resistance to SCN is not well known. Concibido et al.
(1997) mapped the resistance of PI 90763 to SCN races
1, 3 and 6 using a small number of RFLPs and a small
population size. QTLs for SCN resistance were identi-
fied on LGs G and J.

A new classification and designation system of SCN
populations was recently published by Niblack et al.
(2002). However, adoption of this new system may cause
some confusion in comparing data to previously pub-
lished studies. The SCN populations used for SCN-
resistant QTL mapping in the past came largely from
two sources, namely, Missouri and Minnesota (Conci-
bido et al. 1994, 1996, 1997). The Missouri populations
have been used by the Missouri soybean group (Qiu
et al. 1999; Yue et al. 2001a, 2001b) and other research
groups (Wang et al. 2001; Meksem et al. 2001; Heer
et al. 1998; Webb et al. 1995). For convenience of
comparison with earlier studies, we used Schmitt and
Shannon’s (1992) classification system in this study. But
we also gave the HG types of the SCN populations
which we used.

The objectives of this study were to: (1) confirm QTLs
in PI 90763 identified by Concibido et al. (1997) and (2)
identify QTLs for resistance to SCN races 2 and 5.

Materials and methods

Materials

Two hundred twenty-six F2:3families were developed
from a cross between Hamilton and PI 90763. PI 90763
is resistant to SCN races 1, 2, 3 and 5 and moderately
resistant to race 14 (Arelli et al. 1997, 2000; Concibido
et al. 2000). It was introduced into the USA from China
in 1930. Hamilton was released by the Illinois Agricul-
tural Experimental station in 1989 (Nickell et al. 1990)
and is reportedly susceptible to all known SCN races.
Leaves were harvested from each F2 plant and used for
DNA extraction and SSR genotyping. F2 plants were
allowed to set F2:3seed. These F2:3 were used for SCN
phenotyping in the greenhouse.

Soybean cyst nematode bioassay

Soybean cyst nematode races 2 (HG type 1.2.5.7, PA 2), 3
(HG type 0, PA 3) and 5 (HG type 2.5.7, PA 5) main-
tained at the University of Missouri-Columbia were
used. These races were believed to be near-homogeneous
due to reproduction in a small population size for more
than thirty generations (Arelli et al. 1997, 2000).

Soybean cyst nematode bioassays were performed in
the greenhouse at the University of Missouri-Columbia,
as described by Arelli et al. (1997). Soybean seeds were
germinated for 5 days and then transplanted into the
micropots filled with steam-pasteurized soil (1 plant in
each micropot). Twenty micropots were placed in each
plastic container and maintained at 27±1� C in a ther-
mo-regulated waterbath (Forma Scientic Inc., Marietta,
OH). Two days after transplanting, roots of each plant
were inoculated with 2000±50 SCN eggs using an
automatic pipetter (Brewer Automatic pipetting Ma-
chine, Scientific Products, Balltimore, MD). Thirty days
after transplanting, roots of individual plants were har-
vested and washed using pressurized water for collection
of female nematodes. Nematodes were counted under a
stereo-microscope. Two hundred twenty-six F2:3families
(two replications, 5 plants for each replication in each
family) and its parents were evaluated for individual
races, together with four differential soybean lines
(Peking, PI 88788, PI 90763 and Pickett) and the sus-
ceptible soybean cultivar ‘Hutcheson‘ (control) (5 plants
for each differential line and 10 plants for the control).
Differentials and control were used to monitor the shift
of SCN races. No race shifts occurred.

A female index (FI) was used to measure reaction of
each individual plant to SCN (Schmitt and Shannon
1992). Averages of ten plants were used to represent the
response of each family for each race.

FIð%Þ ¼ðnumber of female cyst nematodes on a given

individual = average number of female

nematodes on HutchesonÞ � 100:

DNA extraction and SSR genotyping

DNA was extracted from the parents and 226 F2 plants
using the CTAB method (Keim et al. 1988) and it was
used for SSR genotyping. The SSR molecular markers
described by Song et al. (2004) were used. They were
purchased from Research Genetics Inc. (Huntsville, AL,
USA) or synthesized by Integrated DNA Technologies
Inc. (Coralville, IA, USA). Polymerase chain reaction
(PCR) was conducted in 96-well microplates with a final
volume of 15 ll on the Eppendorf mastercycler gradient
(Eppendorf AG, Germany). Each reaction included
50 ng genomic DNA, 0.25 lm of each of the primers,
0.3 mm each of dNTPs, 2.5 mm of MgCI2 and 0.3 U of
Taq DNA polymerase (Promega Corporation, Madison,
WI). The PCR reaction was performed at 94� C for
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5 min, followed by 35 cycles of 94�C for 30 s, 48.8� C for
30 s and 68.8� C for 45 s, with a final extension for
10 min at 72� C. Amplified products were separated on
3.5% SFR argarose gels (Amresco Inc, USA) and were
stained with ethidium bromide. Pictures were taken
using an alphaImager 2200 (Alpha Innotech corpora-
tion, San Leandro, CA) and bands were scored.

Data analysis

The genetic linkage map was constructed using MAP-
MAKER/EXP version 3.0b (Whitehead Institute,

Cambridge, MA). Haldane map function was used.
Linkage was declared at LOD greater than or equal to
3.0 and a maximum distance of 50 cM. Linkage groups
(LGs) were designated according to Song et al. (2004).

Composite interval mapping (CIM) was used to de-
tect QTL-marker associations using WINQTLCART
v2.0 (Basten et al. 2002; Zeng 1994). Model six was se-
lected with control marker numbers (cofactors) of 5 and
window size of 10 cM. The forward regression method
was used for selecting the control markers. QTLs were
searched for every 2 cM. The highest LOD on a chro-
mosome or a region of the chromosome was used to
indicate the position of a QTL and its 1-LOD support
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Fig. 1 Distribution of average
female index (FI) of F2:3 family
lines from soybean cross
Hamilton · PI 90763. PI 90763:
SCN resistant parent.
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interval was obtained. A suggestive QTL was declared at
LOD=3.0 and a significant QTL at LOD=4.0. We
determined LOD values of 2.9 at the suggestive level (1
false positive per genome scan, i.e., genome-wise type I
error = 0.63) and 4.2 at the significant level (genome-
wise type I error = 0.05) based on computer simulation
tables (Ooijen 1999) (average soybean chromosome
length = 125 cM, Song et al. 2004). We obtained simi-
lar thresholds at the significant levels using permutation
tests (Churchill and Doerge 1994) (LOD = 3.7 to 3.9 for
races 2, 3 and 5 at 1000 permutations each). On the basis
of the formula by Lander and Kruglyak (1995), LOD
values were 3.0 at the suggestive level and 4.5 at the
significant level. We think that LOD=3.0 at the sug-
gestive level and LOD=4.0 at the significant level were
reasonable and convenient.

Results and discussion

Simple sequence repeats and linkage map

Approximately, 1000 SSR markers were surveyed
between parents PI 90763 and Hamilton, and 341
polymorphic SSRs were obtained. One hundred ninety-
two selected polymorphic SSRs were used for mapping.
These SSRs produced 176 co-dominant and 18 domi-
nant loci. Two SSRs had two polymorphic loci each.

A linkage map was constructed and shown in Fig. 2.
One gap (‡50 cM between neighboring markers) oc-
curred on LGs B1, B2, H, L, K, M, N and O, respec-
tively, but two gaps occurred on LG F. Seven markers
remained unassigned, but they were placed on the LGs
and appropriate positions according to the soybean
composite linkage map by Song et al. (2004). The Fig. 2
map was in good agreement for marker order and rel-
ative distance with the composite linkage map. A dif-
ference often occurred in marker order between the
Fig. 2 map and the composite linkage map where
markers were close (less than 5 cM). The correlations
between the Fig. 2 map and the composite linkage map
were high (r‡0.8) for map distance and the marker or-
ders (Table 1). The Fig. 2 map had a linear relationship
with the composite linkage map for map distance on all
LGs except for D1b and J (data not shown).

Quantitative trait loci associated with resistance to SCN

Female index of F2:3families showed non-normal dis-
tributions for race 2 (Shapiro-wilk’s w=0.98, P-va-
lue=0.005; skewwness=0.485, kurtosis=0.031) and
race 3 (Shapiro-wilk’s w=0.97, P-value=0.0003; skew-
ness = 0.379; kurtosis = �0.454) separately, but a
normal distribution for race 5 (Shapiro-wilk’s w=0.99,

Fig. 2 Linkage map
constructed from the cross
Hamilton · PI 90763. QTLs are
indicated by a bar on the right
of linkage group and its 1-LOD
support interval was given by
the length of the bar. Bold SSR
markers are dominant.
Molecular markers Sat_036 and
Satt244 produced two loci each.
Faster bands (locus) are suffixed
by f and slower bands by s. The
two loci of Satt244 are mapped
on nearly the same position.
One locus of Sat_036 is mapped
on the same position (D1a) as
the soybean composite linkage
map but the other on LG L
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P-value=0.1889; skewness=�0.222; kurtosis=0.488)
(Fig. 1). Original data were used for the QTL mapping
data analysis (Fig. 2 and Table 2). The effect of non-
normality on QTL mapping data analysis is expected to
be significantly reduced because of use of cofactor
markers in composite interval mapping (Zeng 1993;
Jansen 1993) and permutation tests for the determina-
tion of threshold values (Churchill and Doerge 1994).
Correlations between races were low to moderate at the
significant level (r=0.206 between races 2 and 3; r=0.30
between races 3 and 5; r=0.41 between races 2 and 5).

Linkage groups G, J and B1 were shown to be
associated with resistance to race 2 in soybean PI 90763
(Fig. 2 and Table 2). The QTL on LG G explained a
larger proportion of the total variation (approximately
15%), whereas the QTLs on J and B1 accounted for a
smaller proportion (approximately 7 to 8%). Linkage
groups G and B1 have been shown to be associated with
resistance to race 2 in other accessions (Yue et al. 2001a,
2001b). The QTL on LG J was first shown to be asso-
ciated with resistance to race 2. It has been shown to be
associated with resistance to races 3 and 14 in other
accessions (Concibido et al. 1997; Glover et al. 2004).

Quantitative trait loci for resistance to race 3 were
found on LGs G, A2, J and L in PI 90763 (Fig. 2 and
Table 2). The QTLs on LG G and A2 explained 22.1
and 17.7% of the total variation, respectively. However,
the QTLs on LGs J and L accounted for only 4% sep-
arately. In Concibido’s (1997) study where this same line

was mapped, LGs G and J have been shown to be
associated with resistance to race 3, which explained 44.8
and 18.8% of the total variation, respectively. The QTL
on LG A2 identified in our study falls on the same re-
gion as the ones identified in other accessions (Webb
et al. 1995; Concibido et al. 1994; Yue et al. 2001a,
2001b), which have also been shown to be associated
with resistance to race 3 (Note: QTLs identified by dif-
ferent studies were defined as falling on the same region
if their confidence intervals overlapped, where QTLs
from different studies were projected on the soybean
composite linkage map and their 95% confidence
intervals were estimated based on the formulae by
Darvasi and Soller (1997), Guo et al. unpublished). The
fact that Concibido et al. (1997) did not report any QTL
on LG A2 may be attributable to the use of fewer
molecular markers.

Quantitative trait loci for resistance to race 5 were
identified on LGs G, E and B1 in PI 90763 (Fig. 2 and
Table 2). They explained a similar proportion of the
total variation (about 12%). Linakge groups G and B1
have also been shown to be associated with resistance to
race 5 in other accessions (Yue et al. 2001a, 2001b). The
QTL on LG E identified by our study was mapped on
the same region (Guo et al. unpublished) as the ones
identified in other accessions (Yue et al. 2001a, 2001b;
Wang et al. 2001), which have been shown to be fre-
quently associated with resistance to race 3 and also with
resistance to races 1, 2 and 14. Qiu et al. (1999) identified

Table 1 Comparison of the linkage map constructed in Hamilton · PI 90763 with the soybean composite linkage map

Linkage groups No.of markers used Coverage (%)a Correlationb

Map distance Marker order

A1 8 90 0.872** 0.965**
A2 10 72 0.996** 1.000**
B1 8 69 0.997** 1.000**
B2 6 47 0.996** 1.000**
C1 9 67 0.992** 1.000**
C2 11 58 0.979** 0.981**
D1a 6 11 0.980** 0.943**
D1b 11 65 0.984** 1.000**
D2 9 92 0.998** 1.000**
E 9 68 0.989** 0.817**
F 10 25 0.990** 0.988**
G 13 92 0.994** 1.000**
H 8 38 0.987** 0.976**
I 9 75 0.996** 0.983**
J 15 82 0.941** 0.991**
K 15 88 0.982** 0.961**
L 9 47 0.980** 0.975**
M 11 95 0.998** 1.000**
N 9 85 0.988** 1.000**
O 9 88 0.995** 0.983**

a The distance of coverage by used markers excluding the interval of ‡30 cM between neighboring markers divided by the total group
map length on the soybean composite linkage map (Song et al. 2004)
b Unassigned markers or unlinked subgroups on the same linkage group are placed on appropriate order and positions according to the
composite linkage map. Fifty cM was given between unassigned or unlinked makers and their neighboring markers. Correlations were
performed using Window SAS version 8.2
** indicates P-value<0.01

969



one QTL on LG E for resistance to race 5, but it is
somewhat distant from the one identified in this study.

The 1-LOD support intervals of QTL positions for
resistance to different races highly overlapped on LG G,
B1 and J, respectively (Fig. 2). We regarded QTLs for
resistance to different races as being the same if their
support intervals overlapped highly. The QTL on LG G
was associated with resistance to SCN races 2, 3 and 5,
which falls on the same region (Guo et al. unpublished)
as the ones in other accessions (Concibido et al. 2004)
except for PI 438489B (Yue et al. 2001a) and PI 468916
(G. soja) (Wang et al. 2001). It had a larger effect on race
3 than on races 2 and 5 (Table 2). The QTL on B1 was
associated with resistance to races 2 and 5, which is
somewhat distant from the ones identified in other
accessions (Yue et al. 2001a, 2001b). The QTL on J was
associated with resistance to races 2 and 3, which falls on
the same regions (Guo et al. unpublished) as those
identified in other accessions (Concibido et al. 1994,
1996; Glover et al. 2004).

It has been demonstrated that LGs G and A2 are
associated with resistance to race 3 in most of SCN
resistance accessions studied to date (Concibido et al.
2004). In contrast, however, LGs G and B1 are identified
for resistance to races 2 and 5 in all three accessions
studied (our study and Yue et al. 2001a, 2001b).
Therefore, we concluded that LGs G and A2 are
important for resistance to SCN race 3, whereas LGs G
and B1 are important for resistance to races 2 and 5. The
QTLs on LG A2 and B1 may reflect an important dis-
tinction between resistance to race 3 and resistance to
race 2 and 5 in soybean.

A QTL was detected on LG L at the suggestive level
in this study. It is not supported by a second study.
Most of the reported SCN-resistant QTLs are not
confirmed by a second study (Concibido et al. 2004).
Additional studies are needed to lend credibility to
these QTLs. These additional studies include confir-
mation (replication) studies and extension studies
(Lander and Kruglyak 1995; Members of the complex

trait consortium 2003). Confirmation studies are used
for the confirmation of reported significant marker-
QTL associations, whereas extension studies are needed
for confirmation of reported QTLs which do not reach
significant levels. In confirmation studies, QTL scan-
ning is targeted on a region of about 20 cM around a
reported QTL. We can also determine the scanning
region using Darvasi’s formula CI = 530 / (N· R2) for
backcross or F2 intercross, where N is population size
and R2 is a proportion of the total variation explained
by the QTL (Darvasi and Soller 1997; Visscher and
Goddard 2004; Weller and Soller 2004). Confirmed
QTL is declared at an interval (scanning region)-wise
significance level. Thresholds can be determined using
Lander and Krugyak’s formula (1995). For example,
P=0.01 can be used to declare confirmed QTLs if the
scanning should region is 20 cM. In extension studies,
we suggest that a chromosome-wise scanning be con-
ducted because the effect of the gene that does not
reach a significant level is usually small. An increased
population size is needed and the initial study popula-
tion can be included. Populations size can be deter-
mined using N=530 / (CI· R2), where CI is the 95%
confidence interval length that you expect in your
experiment. If a significance level is reached, then a
confirmation study is needed.

In summary, QTLs for SCN resistance were identified
on LGs A2, B1, E, G, J and L in soybean PI 90763. The
QTL on LG G was associated with resistance to races 2,
3 and 5. The QTL on LG B1 was associated with
resistance to races 2 and 5. The QTL on J was associated
with resistance to races 2 and 3. The QTL on LGs A2
and L were associated with resistance to race 3. The
QTL on LG E was associated with resistance to race 5.
Additional studies are needed to lend credibility for the
QTL on LG L.
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Table 2 The QTLs associated with resistance to SCN in soybean PI 90763

Race Linkage group Flanking markers Distancea QTL positionb LOD R2 (%)

II G Satt163—Satt688 18.5 2.0 7.9** 14.7
J SatT547—Sat_224 4.7 2.7 4.6** 7.8
B1 Satt453—Satt359 24.0 8.0 3.0* 6.7

III G Satt163—Satt688 18.5 0.0 22.1** 28.1
A2 Sat_400—Satt424 12.3 4.0 14.5** 17.7
J Satt547—Sat_224 4.7 0.7 3.9* 4.2
L Sat-286—Satt229 18.0 8.0 3.0* 4.0

V G Satt163—Satt688 18.5 4.0 7.1** 13.0
E Satt573—Satt204 12.7 6.0 7.2** 12.5
B1 Satt453—satt359 24.0 8.0 6.0** 11.2

a The distance between flanking markers
b The distance from the left flanking marker
* Suggestive at LOD=3.0 (one false positive per genome scan or genome-wise type I error = 0.63)
** Significant at LOD=4.0 (genome-wise type I error=0.05)
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